群

- 1. 结合律: 集合 S 上的二元运算 f 称为满足结合律, 是指 $f(f(x,y),z) = f(x,f(y,z)), x,y,z \in S$, 简记为 (xy)z = x(yz);
- 2. 半群: 具有二元运算"·"的集合 S, 若该运算满足结合律, 则 (S, \cdot) 被称为 半群;
- 3. 单位元 (幺元): 设 (S,·) 是半群, $e \in S$, 若对 $\forall x \in S$, 有 xe = ex = x, 则 称 e 为半群 S 的单位元;
 - (a) 单位元唯一: 若 $e, e' \in S$ 是单位元, e = ee' = e';
 - (b) 左右单位元:
 - i. 左单位元: 若 $e_L \in G$ 满足 $\forall a \in G, e_L a = a$, 则 e_L 称为左单位元;
 - ii. 右单位元: 若 $e_R \in G$ 满足 $\forall a \in G, ae_R = a$, 则 e_R 称为右单位元;
- 4. 含幺半群: 含有单位元的半群;
- 5. 群: 设 G 是一个非空集合, (G, \cdot) 是群若 G 上的二元运算"·"(封闭性) 满 足:
 - (a) 结合律: $\forall a, b, c \in G, (ab)c = a(bc)$;
 - (b) 单位元 (幺元): $\exists e \in G : \forall a \in G, ea = ae = a;$
 - (c) 逆元: $\forall a \in G, \exists a^{-1} \in G, s.t. : a^{-1}a = aa^{-1} = e;$
- 6. 群的逆元唯一: 若 $a^{-1}, a'^{-1} \in G$ 都是 a 的逆元, 则 $e = a^{-1}a = a'^{-1}a = aa^{-1} = aa'^{-1}$;
 - (a) 含幺半群左右逆元相同: 设 (G, \cdot) 为一个含幺半群, 若元素 $a \in G$ 有左逆元 a_L^{-1} 和右逆元 a_R^{-1} , 则 $a_L^{-1} = a_R^{-1} = a^{-1}$ 为 a 的逆元;
- 7. 交换群 (阿贝尔群): 满足交换律的群;
- 8. 设 (M, \cdot) 是含幺半群, M^* 是半群 M 中的可逆元素全体, 则 (M^*, \cdot) 是 群;
- 9. 半群 (G,·) 是群, 当且仅当 (右单位元和右逆元定义同样成立):

- (a) G 有左单位元 e_L : 即 $\forall a \in G : e_L a = a$;
- (b) $\forall a \in G$, 有左逆元 a^{-1} , 使得 $a^{-1}a = e_L$;
- 10. 半群 (G, \cdot) 是群, 当且仅当: $\forall a, b \in G$, 方程 ax = b 和 ya = b 在 G 中均有解;
- 11. 有限半群 (G, \cdot) 是群, 当且仅当左右消去率都成立: $ax = ay \Rightarrow x = y$ 且 $xa = ya \Rightarrow x = y$;